51 research outputs found

    Advances in Organic Aerosol Characterization: From Complex to Simple

    Get PDF
    ABSTRACT Air pollution is the "world largest single environmental health risk" (WHO, 2016). According to the World Health Organization, every year ambient air pollution leads to more than 3 million premature deaths, and 84% of the global population is exposed to atmospheric aerosol levels higher than the limits set to protect human health (WHO, 2016). One of the most abundant, and still less characterized components of atmospheric aerosol is organic aerosol (OA). In particular, OA sources, formation mechanisms, atmospheric ageing, and effects on climate and human health are still subject of research. OA is a mixture of thousands of chemical species, characterized by different physical, chemical, and toxicological properties. Such properties define the effects of OA, and particulate matter, on climate, air quality, and human health (Goldstein and Galbally, 2007). Traditional analytical techniques, based on the identification of single molecular species, describe only a limited fraction of OA mass, generally lower than 30% (Hallquist et al., 2009). During the last decade the use of bulk OA spectrometric analysis introduced simplified descriptions of OA. Such approaches depict OA as formed by a few components with different degrees of oxidation (Aerosol mass spectrometry - AMS) (Zhang et al., 2005), or as the sum of different organic functional groups, (Fourier transform infrared spectrometry - FTIR (Maria et al., 2003), or proton nuclear magnetic resonance spectrometry - H-NMR (Decesari et al., 2007))

    Molecular insights on aging and aqueous-phase processing from ambient biomass burning emissions-influenced Po Valley fog and aerosol

    Get PDF
    To study the influence of regional biomass burning emissions and secondary processes, ambient samples of fog and aerosol were collected in the Po Valley (Italy) during the 2013 Supersito field campaign. After the extent of fresh vs. aged biomass burning influence was estimated from proton nuclear magnetic resonance (1H NMR) and high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS), two samples of fog water and two samples of PM1 aerosol were selected for ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analysis. Molecular compositions indicated that the water-soluble organic matter was largely non-polymeric without clearly repeating units. The selected samples had an atypically large frequency of molecular formulas containing nitrogen and sulfur (not evident in the NMR composition) attributed to multifunctional organonitrates and organosulfates. Higher numbers of organonitrates were observed in aerosol, and higher numbers of organosulfates were observed in fog water. Consistent with the observation of an enhanced aromatic proton signature in the 1H-NMR analysis, the average molecular formula double-bond equivalents and carbon numbers were higher in the fresh biomass-burning-influenced samples. The average O:C and H:C values from FT-ICR MS were higher in the samples with an aged influence (O:C = 0.50–0.58, and H:C = 1.31–1.37) compared to those with fresh influence (O:C = 0.43–0.48, and H:C = 1.13–1.30). The aged fog had a large set of unique highly oxygenated CHO fragments in the HR-ToF-AMS, which reflects an enrichment of carboxylic acids and other compounds carrying acyl groups, highlighted by the NMR analysis. Fog compositions were more oxidized and SOA (secondary organic aerosol)-like than aerosols as indicated by their NMR measured acyl-to-alkoxyl ratios and the observed molecular formula similarity between the aged aerosol and fresh fog, implying that fog nuclei must be somewhat aged. Overall, functionalization with nitrate and sulfate moieties, in addition to aqueous oxidation, triggers an increase in the molecular complexity in this environment, which is apparent in the FT-ICR MS results. This study demonstrates the significance of the aqueous phase in transforming the molecular chemistry of atmospheric organic matter and contributing to secondary organic aerosol

    Spatial and temporal variability of carbonaceous aerosol absorption in the Po Valley

    Get PDF
    Knowledge gaps in the optical properties of carbonaceous aerosols account for a significant fraction of the uncertainty of aerosol-light interactions in climate models. Both black carbon (BC) and brown carbon (BrC) can display a range of optical properties in ambient aerosol due to different sources and chemical transformation pathways. This study investigates the optical absorption properties of BC and BrC at an urban and a rural site in the Po Valley (Italy), a known European pollution hot spot. We observed spatial and seasonal variability of aerosol absorption coefficients, with the highest values measured in winter at the urban site of Milan (12 Mm–1 on average) and the lowest values in summer at the rural site of Motta Visconti (3 Mm–1 on average). The average aerosol Absorption Å ngström Exponent (AAE) measured during the two experiments across the 370–880 nm wavelength range was 1.1 and 1.2 at the urban and the rural site, respectively. The observed AAE values in winter (the average AAE during the two winter campaigns was 1.2) are consistent with the contribution of wood burning BrC, as confirmed by macro-tracer analysis. The BC mass absorption cross section (MACBC) did not show a specific seasonal or spatial variability across the two sites and maintained an average value of 10 ± 5 m2 g–1 at 880 nm. The optical properties of BrC, investigated off-line after extraction of organic aerosol (OA) indicate that wood burning was the dominant BrC source in winter, while secondary organic aerosol (SOA) from other anthropogenic emissions was the main source of BrC in summer

    Seasonal Variability of PM10 Chemical Composition Including 1,3,5-triphenylbenzene, Marker of Plastic Combustion and Toxicity in Wadowice, South Poland

    Get PDF
    ABSTRACT The objective of this research was to evaluate the seasonal variation of the chemical composition of PM10 including polycyclic aromatic hydrocarbons (PAHs) and 1,3,5-triphenylbenzene (135TPB), which is a well known marker of plastic combustion. The presented work is a part of the project concerning assessment of air quality of small cities around Krakow agglomeration. Monitoring campaign was conducted between February and October 2017 in Wadowice, a small city in Krakow agglomeration, South Poland. To widen the knowledge of Krakow's agglomeration air quality, other aerosol chemical components were analyzed. Ion chromatography (IC) was used for analysis of cations and anions, while gas chromatography-mass spectrometry (GC-MS) was used for PAHs. Samples were also analyzed for OC/EC (organic/elemental carbon) by thermal-optical analysis with a Sunset Laboratory carbon analyzer, Sunset Inc. The co-combustion of plastic in addition to conventional fuels and the respective impact on air quality is evaluated via the concentration of the marker compound 135TPB. Co-combustion of plastics with fuels resulted in a higher abundance of fluorene and most of 4–6 ring PAHs, in agreement with recent literature. Authors proved that other sources besides plastic burning, including road transport, residential heating, residential combustion, industrial emissions, affect the air quality in South Poland. The modeling tool Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT), developed by NOAA's Air Resources Laboratory, was used to define the possible areas outside Wadowice contributing to urban air pollution

    Better constraints on sources of carbonaceous aerosols using a combined 14C – macro tracer analysis in a European rural background site

    Get PDF
    The source contributions to carbonaceous PM2.5 aerosol were investigated at a European background site at the edge of the Po Valley, in Northern Italy, during the period January - December 2007. Carbonaceous aerosol was described as the sum of eight source components: primary (1) and secondary (2) biomass burning organic carbon, biomass burning elemental carbon (3), primary (4) and secondary (5) fossil fuel burning organic carbon, fossil fuel burning elemental carbon (6), primary (7) and secondary (8) biogenic organic carbon. The concentration of each component was quantified using a set of macro tracers (organic carbon OC, elemental carbon EC, and levoglucosan), micro tracers (arabitol and mannitol), and 14C measurements. This was the first time that 14C measurements were performed on a long time series of data able to represent the entire annual cycle. This set of 6 tracers, together with assumed uncertainty ranges of the ratios of OC-to-EC, and the fraction of modern carbon in the 8 source categories, provides strong constraints to the source contributions to carbonaceous aerosol. The uncertainty of contributions was assessed with a Quasi-Monte Carlo (QMC) method accounting for the variability of OC and EC emission factors, and the uncertainty of reference fractions of modern carbon. During winter biomass burning composed 50% of the total carbon (TC) concentration, while in summer secondary biogenic OC accounted for 45% of TC. The contribution of primary biogenic aerosol particles was negligible during the entire year. Moreover, aerosol associated with fossil fuel burning represented 26% and 43% of TC in winter and summer, respectively. The comparison of source apportionment results in different urban and rural areas showed that the sampling site was mainly affected by local aerosol sources during winter and regional air masses from the nearby Po Valley in summer. This observation was further confirmed by back-trajectory analysis applying the Potential Source Contribution Function method to identify potential source regions. The contribution of secondary organic aerosol (SOA) to the organic mass (OM) was significant during the entire year. SOA accounted for 23% and 83% of OM during winter and summer, respectively. While the summer SOA was dominated by biogenic sources, winter SOA was mainly due to biomass and fossil fuel burning. This indicates that the oxidation of intermediate volatility organic compounds co-emitted with primary organics is a significant source of SOA, as suggested by recent model results and Aerosol Mass Spectrometer measurements in urban regions. Comparison with previous global model simulations, indicates a strong underestimate of wintertime primary aerosol emissions in this region.JRC.H.2-Air and Climat

    The Morphology of Atmospheric Aerosol and Some Implications

    Get PDF
    The morphology of individual atmospheric particles, including their mixing state, shape and internal structure, can have important atmospheric implications. Understanding the mechanisms leading to specific morphologies, the role of morphology in different atmospheric processes, and accounting for these details in models present considerable challenges. Several approaches are currently underway to make progress toward the resolution of these difficulties; for example, development and deployment of improved single particle analytical and observational tools, use of accurate electromagnetic models to quantitatively predict the interactions of solar radiation with single complex particles, and particle resolved models. In this presentation we will present single particle analyses of samples collected during several field campaigns. Implications of these results on the effects upon aerosol optical properties will be discussed

    Size-resolved aerosol composition at an urban and a rural site in the Po Valley in summertime: implications for secondary aerosol formation

    Get PDF
    The aerosol size-segregated chemical composition was analyzed at an urban (Bologna) and a rural (San Pietro Capofiume) site in the Po Valley, Italy, during June and July 2012, by ion-chromatography (major water-soluble ions and organic acids) and evolved gas analysis (total and water-soluble carbon), to investigate sources and mechanisms of secondary aerosol formation during the summer. A significant enhancement of secondary organic and inorganic aerosol mass was observed under anticyclonic conditions with recirculation of planetary boundary layer air but with substantial differences between the urban and the rural site. The data analysis, including a principal component analysis (PCA) on the size-resolved dataset of chemical concentrations, indicated that the photochemical oxidation of inorganic and organic gaseous precursors was an important mechanism of secondary aerosol formation at both sites. In addition, at the rural site a second formation process, explaining the largest fraction (22 %) of the total variance, was active at nighttime, especially under stagnant conditions. Nocturnal chemistry in the rural Po Valley was associated with the formation of ammonium nitrate in large accumulation-mode (0.42–1.2 µm) aerosols favored by local thermodynamic conditions (higher relative humidity and lower temperature compared to the urban site). Nocturnal concentrations of fine nitrate were, in fact, on average 5 times higher at the rural site than in Bologna. The water uptake by this highly hygroscopic compound under high RH conditions provided the medium for increased nocturnal aerosol uptake of water-soluble organic gases and possibly also for aqueous chemistry, as revealed by the shifting of peak concentrations of secondary compounds (water-soluble organic carbon (WSOC) and sulfate) toward the large accumulation mode (0.42–1.2 µm). Contrarily, the diurnal production of WSOC (proxy for secondary organic aerosol) by photochemistry was similar at the two sites but mostly affected the small accumulation mode of particles (0.14–0.42 µm) in Bologna, while a shift to larger accumulation mode was observed at the rural site. A significant increment in carbonaceous aerosol concentration (for both WSOC and water-insoluble carbon) at the urban site was recorded mainly in the quasi-ultrafine fraction (size range 0.05–0.14 µm), indicating a direct influence of traffic emissions on the mass concentrations of this range of particles

    South African EUCAARI measurements: seasonal variation of trace gases and aerosol optical properties

    Get PDF
    In this paper we introduce new in situ observations of atmospheric aerosols, especially chemical composition, physical and optical properties, on the eastern brink of the heavily polluted Highveld area in South Africa. During the observation period between 11 February 2009 and 31 January 2011, the mean particle number concentration (size range 10–840 nm) was 6310 cm−3 and the estimated volume of sub-10 μm particles 9.3 μm3 m−3. The aerosol absorption and scattering coefficients at 637 nm were 8.3Mm−1 and 49.5Mm−1, respectively. The mean single-scattering albedo at 637 nm was 0.84 and the A° ngstro¨m exponent of scattering was 1.5 over the wavelength range 450–635 nm. The mean O3, SO2, NOx and H2S-concentrations were 37.1, 11.5, 15.1 and 3.2 ppb, respectively. The observed range of concentrations was large and attributed to the seasonal variation of sources and regional meteorological effects, especially the anticyclonic re-circulation and strong winter-time inversions. In a global context, the levels of gases and particulates were typical for continental sites with strong anthropogenic influence, but clearly lower than the most polluted areas of southeastern Asia. Of all pollutants observed at the site, ozone is the most likely to have adverse environmental effects, as the concentrations were high also during the growing season. The measurements presented here will help to close existing gaps in the ground-based global atmosphere observation system, since very little long-term data of this nature is available for southern Africa.JRC.H.7-Climate Risk Managemen

    Extensive soot compaction by cloud processing from laboratory and field observations

    Get PDF
    Soot particles form during combustion of carbonaceous materials and impact climate and air quality. When freshly emitted, they are typically fractal-like aggregates. After atmospheric aging, they can act as cloud condensation nuclei, and water condensation or evaporation restructure them to more compact aggregates, affecting their optical, aerodynamic, and surface properties. Here we survey the morphology of ambient soot particles from various locations and different environmental and aging conditions. We used electron microscopy and show extensive soot compaction after cloud processing. We further performed laboratory experiments to simulate atmospheric cloud processing under controlled conditions. We find that soot particles sampled after evaporating the cloud droplets, are significantly more compact than freshly emitted and interstitial soot, confirming that cloud processing, not just exposure to high humidity, compacts soot. Our findings have implications for how the radiative, surface, and aerodynamic properties, and the fate of soot particles are represented in numerical models
    • …
    corecore